Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 207: 108401, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301327

RESUMO

The exogenous application of amino acids (AAs) generally alleviates cadmium (Cd) toxicity in plants by altering their subcellular distribution. However, the physiological mechanisms underlying AA-mediated cell wall (CW) sequestration of Cd in Chinese cabbage remain unclear. Using two genotypes of Chinses cabbage, Jingcui 60 (Cd-tolerant) and 16-7 (Cd-sensitive), we characterized the root structure, subcellular distribution of Cd, CW component, and related gene expression under the Cd stress. Cysteine (Cys) supplementation led to a reduction in the Cd concentration in the shoots of Jingcui 60 and 16-7 by 65.09 % and 64.03 %, respectively. Addition of Cys alleviated leaf chlorosis in both cultivars by increasing Cd chelation in the root CW and reducing its distribution in the cytoplasm and organelles. We further demonstrated that Cys supplementation mediated the downregulation of PMEI1 expression and improving the activity of pectin methyl-esterase (PME) by 17.98 % and 25.52 % in both cultivars, respectively, compared to the Cd treatment, resulting in an approximate 12.00 %-14.70 % increase in Cd retention in pectin. In contrast, threonine (Thr) application did not significantly alter Cd distribution in the shoots of either cultivar. Taken together, our results suggest that Cys application reduces Cd root-to-shoot translocation by increasing Cd sequestration in the root CW through the downregulation of pectin methyl-esterification.


Assuntos
Brassica , Poluentes do Solo , Pectinas/metabolismo , Cádmio/metabolismo , Aminoácidos/metabolismo , Esterificação , Brassica/genética , Brassica/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo
2.
J Orthop Translat ; 40: 132-146, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37457309

RESUMO

Background: Eurycomanone (EN) is a diterpenoid compound isolated from the roots of Eurycoma longifolia (E. longifolia). Previous studies have confirmed that E. longifolia can enhance bone regeneration and bone strength. We previously isolated and identified ten quassinoids from E. longifolia, and the result displayed that five aqueous extracts have the effects on promotion of bone formation, among whom EN showed the strongest activity. However, the molecular mechanism of EN on bone formation was unknown, and we further investigated in this study. Methods: After the verification of purity of extracted EN, following experiments were conducted. Firstly, the pharmacologic action of EN on normal bone mineralization and the therapeutic effect of EN on Dex-induced bone loss using zebrafish larvae. The mineralization area and integral optical density (IOD) were evaluated using alizarin red staining. Then the vital signaling pathways of EN relevant to OP was identified through network pharmacology analysis. Eventually in vitro, the effect of EN on cell viability, osteogenesis activities were investigated in human bone marrow mesenchymal stem cells (hMSCs) and C3H10 cells, and the molecular mechanisms by which applying AKT inhibitor A-443654 in hMSCs. Results: In zebrafish larvae, the administration in medium of EN (0.2, 1, and 5 µM) dramatically enhanced the skull mineralization area and integral optical density (IOD), and increased mRNA expressions of osteoblast formation genes (ALP, RUNX2a, SP7, OCN). Meanwhile, exposure of EN remarkably alleviated the inhibition of bone formation induced by dexamethasone (Dex), prominently improved the mineralization, up-regulated osteoblast-specific genes and down-regulated osteoclast-related genes (CTSK, RANKL, NFATc1, TRAF6) in Dex-treated bone loss zebrafish larvae. Network pharmacology outcomes showed the MAPK and PI3K-AKT signaling pathways are closely associated with 10 hub genes (especially AKT1), and AKT/GSK-3ß/ß-catenin was selected as the candidate analysis pathway. In hMSCs and C3H10 cells, results showed that EN at appropriate concentrations of 0.008-5 µM effectively increased the cell proliferation. In addition, EN (0.04, 0.2, and 1 µM) significantly stimulated osteogenic differentiation and mineralization as well as significantly increased the protein phosphorylation of AKT and GSK-3ß, and expression of ß-catenin, evidencing by the results of ALP and ARS staining, qPCR and western blotting. Whereas opposite results were presented in hMSCs when treated with AKT inhibitor A-443654, which effectively inhibited the pro-osteogenesis effect induced by EN, suggesting EN represent powerful potential in promoting osteogenesis of hMSCs, which may be closely related to the AKT/GSK-3ß/ß-catenin signaling pathway. Conclusions: Altogether, our findings indicate that EN possesses remarkable effect on bone formation via activating AKT/GSK-3ß/ß-catenin signaling pathway in most tested concentrations. The translational potential of this article: This study demonstrates EN is a new effective monomer in promoting bone formation, which may be a promising anabolic agent for osteoporosis (OP) treatment.

3.
Nat Commun ; 14(1): 258, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650145

RESUMO

Pollen tube guidance within female tissues of flowering plants can be divided into preovular guidance, ovular guidance and a connecting stage called pollen tube emergence. As yet, no female factor has been identified to positively regulate this transition process. In this study, we show that an ovary-expressed bHLH transcription factor Cucumis sativus ALCATRAZ (CsALC) functions in pollen tube emergence in cucumber. CsALC knockout mutants showed diminished pollen tube emergence, extremely reduced entry into ovules, and a 95% reduction in female fertility. Further examination showed two rapid alkalinization factors CsRALF4 and CsRALF19 were less expressed in Csalc ovaries compared to WT. Besides the loss of male fertility derived from precocious pollen tube rupture as in Arabidopsis, Csralf4 Csralf19 double mutants exhibited a 60% decrease in female fertility due to reduced pollen tube distribution and decreased ovule targeting efficiency. In brief, CsALC regulates female fertility and promotes CsRALF4/19 expression in the ovary during pollen tube guidance in cucumber.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cucumis sativus , Cucumis sativus/genética , Ovário/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Óvulo Vegetal/metabolismo
4.
Seizure ; 103: 126-136, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403388

RESUMO

Biological activities require a delicate balance between excitatory and inhibitory signals in the brain. Disruption of this balance could lead to neurological disorders, such as epilepsydue to a relative enhancement of excitatory signals. In general, cytosolic calcium plays a key role in the transmission of excitatory signals mainly by promoting the release of synaptic vesicles containing neurotransmitters. A series of molecular components responsible for maintaining intracellular calcium homeostasis, including voltage-gated calcium (CaV) channels, the endoplasmic reticulum (ER) calcium sensor stromal interaction molecule (STIM), the PM calcium channel Orai, ER-resident inositol trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), sarco-endoplasmic reticulum calcium ATPase (SERCA), and transmembrane and coiled-coil domains 1 (TMCO1), have been demonstrated to be involved in calcium dysregulation that underlies epileptic seizures. More importantly, epileptic phenotypes were confirmed in several molecular components by transgenic animal models, including CACNA1A, CACNA1E, CACNA1G, CACNA2D1, ORAI1 and IP3R1. Calcium-binding proteins (CaBPs), such as calmodulin, parvalbumin, calretinin, and calbindin, provide an additional layer of defense by acting as calcium reservoirs to buffer rapid increases in cytosolic calcium concentrations and participate in cellular functions by regulating the activities of ion channels or acting as calcium-modulated sensors, and a series of lines of evidence support their implication with epileptic activities. Overall, stroke represents the most common environmental cause of acquired epilepsy in older adults, and preventing calcium disruption due to reperfusion injury might be an effective way to treat acute symptomatic seizures and decrease the risk for acquired poststroke epilepsy.


Assuntos
Cálcio , Epilepsia , Animais , Convulsões , Epilepsia/etiologia , Canal de Liberação de Cálcio do Receptor de Rianodina , Homeostase
5.
Plant Cell ; 34(11): 4232-4254, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36047828

RESUMO

Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.


Assuntos
Grão Comestível , Glucose , Transportadores de Nitrato , Transportador 1 de Peptídeos , Proteínas de Plantas , Sacarose , Zea mays , Humanos , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Glucose/metabolismo , Células HEK293 , Transportadores de Nitrato/genética , Transportadores de Nitrato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Transportador 1 de Peptídeos/genética , Transportador 1 de Peptídeos/metabolismo , Transporte Biológico
6.
Chem Biol Interact ; 367: 110140, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36087817

RESUMO

Phytochemicals with bone formation potential in traditional medicines captured more and more attentions due to their advantages to bone loss and fewer side effects. As a famous aphrodisiac phytomedicine, Eurycoma longifolia (EL) has acquired general recognition in improving male sexual health, and thus been considered as traditional medicine for the treatment of androgen-deficient osteoporosis. Although the aqueous extract of EL had been proved to be beneficial to bone loss, the active constituents and the mechanisms underlying the effects are still obscure. The current study performed a chemical investigation on the roots of EL, which resulted in the isolation and identification of ten quassinoids (EL-1-EL-10), and then conducted their osteogenic activity evaluations in vivo zebrafish model with or without dexamethasone (Dex) and in vitro C3H10 cell model. The result displayed that most tested concentrations of EL-1-EL-5 could significantly increase the mineralization areas and integrated optical densities (IODs) of skull in both zebrafish model. The majority tested concentrations of EL-1-EL-5 could also improve the mRNA expression of early osteogenic associated genes ALPL, Runx2a, Sp7 in zebrafish model without Dex, but only a few could accelerate the mRNA expression of late osteogenic associated genes OCN. These results suggested the ability of EL-1-EL-5 to increase bone formation mainly by accelerating osteogenic differentiation at the early stage. The structure-based virtual screening based on the pharmacophores in ePharmaLib, as well as the molecular docking study, implied that the effects of the quassinoids (EL-1-EL-5) on the enhancement of bone formation might be related with improving the content and the activity of androgen through binding with CYP19A, SHBG and AKR1C2, and activating bone metabolism-related ANDR target genes and signal pathways by combining with ANDR directly. Although the assumptions are in silico model-based and further in vitro and in vivo validations are still necessary, we provided a new perspective to explore the potential of EL to be used as an alternative treatment for not only androgen-deficient osteoporosis, but also estrogen-deficient bone loss, by combining with SHBG.


Assuntos
Afrodisíacos , Eurycoma , Osteoporose , Quassinas , Androgênios , Animais , Afrodisíacos/uso terapêutico , Dexametasona , Estrogênios , Eurycoma/química , Masculino , Simulação de Acoplamento Molecular , Osteogênese , Osteoporose/metabolismo , Extratos Vegetais/química , Quassinas/química , Quassinas/farmacologia , RNA Mensageiro , Peixe-Zebra
7.
Plant Physiol Biochem ; 185: 35-44, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660775

RESUMO

Nitrogen (N) deficiency is a primary limiting factor for crop production worldwide. Previously, we reported root system architectural modifications of hydroponically cultured foxtail millet [Setaria italica (L.) Beauv.] to facilitate N translocation under N limitation. Here, we investigated foxtail millet for its shoot adaptation to low N in terms of internal N regulation under hydroponic culture. The results of this study revealed that the shoot N and nitrate (NO3-) concentrations significantly declined as compared to control (CK); however, the shoot over-accumulated ammonium (NH4+) under low N (LN). N shortage resulted in down-regulation of expressions of SiPetA, SiccsA, SipsbA, SirpoB, SipsaA, SiatpA, Sirps16, and SiPEPC which, undermined chloroplast functioning and CO2 assimilation for the provision of carbon skeleton. Carbon deficiency and lower activities of GS decelerated ammonia assimilation and led to over-accumulation of NH4+ in the LN-shoot, as indicated by lower concentrations of total amino acids. Thus, enhanced GOGAT activity was to assimilate NH4+ while, those of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) were to scavenge reactive oxygen species (ROS) of NH4+ toxicity framework. The weakened chloroplast factory eventually minimized photosynthesis and reduced dry mass of the LN shoot. Such regulation of N by the shoot, perhaps, resurrected physiological functions which maintained internal mineral status under nitrogen limitation in foxtail millet.


Assuntos
Compostos de Amônio , Setaria (Planta) , Compostos de Amônio/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Setaria (Planta)/metabolismo
8.
Plant Cell Physiol ; 63(5): 605-617, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35137209

RESUMO

Crop plants experience various abiotic stresses that reduce yield and quality. Although several adaptative physiological and defense responses to single stress have been identified, the behavior and mechanisms of plant response to multiple stresses remain underexamined. Herein, we determined that the leaf and vascular changes in Cucumis sativus Irregular Vasculature Patterning (CsIVP)-RNAi cucumber plants can enhance resistance to nitrogen deficiency and high-temperature stress. CsIVP negatively regulated high nitrate affinity transporters (NRT2.1, NRT2.5) and reallocation transporters (NRT1.7, NRT1.9, NRT1.12) under low nitrogen stress. Furthermore, CsIVP-RNAi plants have high survival rate with low heat injury level under high-temperature condition. Several key high-temperature regulators, including Hsfs, Hsps, DREB2C, MBF1b and WRKY33 have significant expression in CsIVP-RNAi plants. CsIVP negatively mediated high-temperature responses by physically interacting with CsDREB2C. Altogether, these results indicated that CsIVP integrates innate programming of plant development, nutrient transport and high-temperature resistance, providing a potentially valuable target for breeding nutrient-efficient and heat-resistant crops.


Assuntos
Cucumis sativus , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Nitrogênio/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
9.
Front Pharmacol ; 12: 772190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899327

RESUMO

Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by abnormal bone metabolism, with few effective treatments available. Danshensu [3-(3,4-dihydroxy-phenyl) lactic acid) is a bioactive compound from traditional Chinese medicine with a variety of pharmacologic effects. In the present study, we investigated the pharmacologic effect and molecular mechanism of Danshensu in AS. Potential targets of Danshensu were identified in four drugs-genes databases; and potential pharmacologic target genes in AS were identified in three diseases-genes databases. Differentially expressed genes related to AS were obtained from the Gene Expression Omnibus database. Overlapping targets of Danshensu and AS were determined and a disease-active ingredient-target interaction network was constructed with Cytoscape software. Enrichment analyses of the common targets were performed using Bioconductor. To test the validity of the constructed network, an in vitro model was established by treating osteoblasts from newborn rats with low concentrations of tumor necrosis factor (TNF)-α. Then, the in vitro model and AS fibroblasts were treated with Danshensu (1-10 µM). Osteogenesis was evaluated by alkaline phosphatase staining and activity assay, alizarin red staining, quantitative PCR, and western blotting. We identified 2944 AS-related genes and 406 Danshensu targets, including 47 that were common to both datasets. The main signaling pathways associated with the targets were the c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways. A low concentration of TNF-α (0.01 ng/ml) promoted the differentiation of osteoblasts; this was inhibited by Danshensu, which had the same effect on AS fibroblasts but had the opposite effect on normal osteoblasts. Danshensu also decreased the phosphorylation of JNK and ERK in AS fibroblasts. There results provide evidence that Danshensu exerts an anti-osteogenic effect via suppression of JNK and ERK signaling, highlighting its therapeutic potential for the treatment of AS.

10.
J Exp Bot ; 72(10): 3846-3863, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33765129

RESUMO

Phosphorus and nitrogen nutrition have profound and complicated innate connections; however, underlying molecular mechanisms are mostly elusive. PHR1 is a master phosphate signaling component, and whether it directly functions in phosphorus-nitrogen crosstalk remains a particularly interesting question. In maize, nitrogen limitation caused tip kernel abortion and ear shortening. By contrast, moderately low phosphate in the field reduced kernels across the ear, maintained ear elongation and significantly lowered concentrations of total free amino acids and soluble proteins 2 weeks after silking. Transcriptome profiling revealed significant enrichment and overall down-regulation of transport genes in ears under low phosphate. Importantly, 313 out of 847 differentially expressed genes harbored PHR1 binding sequences (P1BS) including those controlling amino acid/polyamine transport and metabolism. Specifically, both ZmAAP2 and ZmLHT1 are plasma membrane-localized broad-spectrum amino acid transporters, and ZmPHR1.1 and ZmPHR1.2 were able to bind to P1BS-containing ZmAAP2 and ZmLHT1 and down-regulate their expression in planta. Taken together, the results suggest that prevalence of P1BS elements enables ZmPHR1s to regulate a large number of low phosphate responsive genes. Further, consistent with reduced accumulation of free amino acids, ZmPHR1s down-regulate ZmAAP2 and ZmLHT1 expression as direct linkers of phosphorus and nitrogen nutrition independent of NIGT1 in maize ear under low phosphate.


Assuntos
Fatores de Transcrição , Zea mays , Sistemas de Transporte de Aminoácidos , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismo
11.
Front Plant Sci ; 12: 802399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003191

RESUMO

Magnesium (Mg) deficiency is becoming a widespread limiting factor for crop production. How crops adapt to Mg limitation remains largely unclear at the molecular level. Using hydroponic-cultured tomato seedlings, we found that total Mg2+ content significantly decreased by ∼80% under Mg limitation while K+ and Ca2+ concentrations increased. Phylogenetic analysis suggested that Mg transporters (MRS2/MGTs) constitute a previously uncharacterized 3-clade tree in planta with two rounds of asymmetric duplications, providing evolutionary evidence for further molecular investigation. In adaptation to internal Mg deficiency, the expression of six representative MGTs (two in the shoot and four in the root) was up-regulated in Mg-deficient plants. Contradictory to the transcriptional elevation of most of MGTs, Mg limitation resulted in the ∼50% smaller root system. Auxin concentrations particularly decreased by ∼23% in the Mg-deficient root, despite the enhanced accumulation of gibberellin, cytokinin, and ABA. In accordance with such auxin reduction was overall transcriptional down-regulation of thirteen genes controlling auxin biosynthesis (TAR/YUCs), transport (LAXs, PINs), and signaling (IAAs, ARFs). Together, systemic down-tuning of gene expression in the auxin signaling pathway under Mg limitation preconditions a smaller tomato root system, expectedly stimulating MGT transcription for Mg uptake or translocation.

12.
Plant Physiol ; 184(1): 374-392, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32586893

RESUMO

Carotenoid cleavage dioxygenases (CCDs) drive carotenoid catabolism to produce various apocarotenoids and immediate derivatives with particular developmental, ecological, and agricultural importance. How CCD genes evolved with species diversification and the resulting functional novelties in cereal crops have remained largely elusive. We constructed a unified four-clade phylogenetic tree of CCDs, revealing a previously unanchored basal clade CCD10 CCD10 underwent highly dynamic duplication or loss events, even in the grass family. Different from cleavage sites of CCD8 and ZAXINONE SYNTHASE (ZAS), maize (Zea mays) ZmCCD10a cleaved differentially structured carotenoids at 5, 6 (5', 6') and 9, 10 (9', 10') positions, generating C8 (6-methyl-5-hepten-2-one) and C13 (geranylacetone, α-ionone, and ß-ionone) apocarotenoids in Escherichia coli Localized in plastids, ZmCCD10a cleaved neoxanthin, violaxanthin, antheraxathin, lutein, zeaxanthin, and ß-carotene in planta, corroborating functional divergence of ZmCCD10a and ZAS. ZmCCD10a expression was dramatically stimulated in maize and teosinte (Z. mays ssp. parviglumis, Z. mays ssp. huehuetenangensis, Zea luxurians, and Zea diploperennis) roots by phosphate (Pi) limitation. ZmCCD10a silencing favored phosphorus retention in the root and reduced phosphorus and biomass accumulation in the shoot under low Pi. Overexpression of ZmCCD10a in Arabidopsis (Arabidopsis thaliana) enhanced plant tolerance to Pi limitation by preferential phosphorus allocation to the shoot. Thus, ZmCCD10a encodes a unique CCD facilitating plant tolerance to Pi limitation. Additionally, ZmCCD10a silencing and overexpression led to coherent alterations in expression of PHOSPHATE STARVATION RESPONSE REGULATOR 1 (PHR1) and Pi transporters, and cis-regulation of ZmCCD10a expression by ZmPHR1;1 and ZmPHR1;2 implies a probable ZmCCD10a-involved regulatory pathway that adjusts Pi allocation.


Assuntos
Carotenoides/metabolismo , Dioxigenases/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Norisoprenoides/metabolismo , Terpenos/metabolismo , Xantofilas/metabolismo , Zea mays/metabolismo , beta Caroteno/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-32344636

RESUMO

In this study, the Nordic Musculoskeletal Questionnaire (NMQ) was administered to a valid sample of 81 Taiwanese bakery workers to explore their discomfort or symptoms of work-related musculoskeletal disorders and identify the risk factors. Wrist postures were also examined during 3 typical dough operations (kneading, rolling, and rounding) by using an electrogoniometer. The prevalence of musculoskeletal discomfort in any part of the body in the past year among the respondents was 93.0%, with the highest prevalence of 66.3% and 51.8% in the hands/wrists (right and left), followed by the prevalence of 50.6% and 45.8% in the shoulders (right and left) and the lower back (48.2%), respectively. The results also revealed that during the 3 dough processing operations, the workers' wrist movements in specific operations were close to the recommended limits suggested in previous studies, especially the ulnar deviation and palm flexion of the right wrist during dough kneading and the radial deviation of the left wrist during dough rolling and rounding. The study findings can be used to explain why the bakers self-report a high proportion of wrist and shoulder disorders and can also serve as a reference for task rearrangement and redesign.


Assuntos
Doenças Musculoesqueléticas , Doenças Profissionais , Indústria Alimentícia , Humanos , Postura , Prevalência , Fatores de Risco , Ombro , Inquéritos e Questionários
14.
PLoS Biol ; 18(3): e3000671, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203514

RESUMO

Domesticated crops with high yield and quality are frequently susceptible to pathogen attack, whereas enhancement of disease resistance generally compromises crop yield. The underlying mechanisms of how plant development and disease resistance are coordinately programed remain elusive. Here, we showed that the basic Helix-Loop-Helix (bHLH) transcription factor Cucumis sativus Irregular Vasculature Patterning (CsIVP) was highly expressed in cucumber vascular tissues. Knockdown of CsIVP caused severe vasculature disorganization and abnormal organ morphogenesis. CsIVP directly binds to vascular-related regulators YABBY5 (CsYAB5), BREVIPEDICELLUS (CsBP), and AUXIN/INDOLEACETIC ACIDS4 (CsAUX4) and promotes their expression. Knockdown of CsYAB5 resulted in similar phenotypes as CsIVP-RNA interference (RNAi) plants, including disturbed vascular configuration and abnormal organ morphology. Meanwhile, CsIVP-RNAi plants were more resistant to downy mildew and accumulated more salicylic acid (SA). CsIVP physically interacts with NIM1-INTERACTING1 (CsNIMIN1), a negative regulator in the SA signaling pathway. Thus, CsIVP is a novel vasculature regulator functioning in CsYAB5-mediated organ morphogenesis and SA-mediated downy mildew resistance in cucumber.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/imunologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cucumis sativus/classificação , Cucumis sativus/genética , Resistência à Doença/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Morfogênese , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ligação Proteica , Ácido Salicílico/metabolismo , Transdução de Sinais/genética
15.
Plant Cell ; 31(6): 1289-1307, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30979795

RESUMO

Fruit length is a prominent agricultural trait during cucumber (Cucumis sativus) domestication and diversifying selection; however, the regulatory mechanisms of fruit elongation remain elusive. We identified two alleles of the FRUITFULL (FUL)-like MADS-box gene CsFUL1 with 3393C/A Single Nucleotide Polymorphism variation among 150 cucumber lines. Whereas CsFUL1A was specifically enriched in the long-fruited East Asian type cucumbers (China and Japan), the CsFUL1C allele was randomly distributed in cucumber populations, including wild and semiwild cucumbers. CsFUL1A knockdown led to further fruit elongation in cucumber, whereas elevated expression of CsFUL1A resulted in significantly shorter fruits. No effect on fruit elongation was detected when CsFUL1C expression was modulated, suggesting that CsFUL1A is a gain-of-function allele in long-fruited cucumber that acts as a repressor during diversifying selection of East Asian cucumbers. Furthermore, CsFUL1A binds to the CArG-box in the promoter region of SUPERMAN, a regulator of cell division and expansion, to repress its expression. Additionally, CsFUL1A inhibits the expression of auxin transporters PIN-FORMED1 (PIN1) and PIN7, resulting in decreases in auxin accumulation in fruits. Together, our work identifies an agriculturally important allele and suggests a strategy for manipulating fruit length in cucumber breeding that involves modulation of CsFUL1A expression.


Assuntos
Cucumis sativus/genética , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Alelos , Frutas/genética , Proteínas de Plantas/genética
16.
Biochem Biophys Res Commun ; 511(4): 753-758, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30833079

RESUMO

Long non-coding RNAs (lncRNAs) have gained extensive attentions due to their significant roles in diverse biological process. However, the potential functions of lncRNAs participation in adipocyte differentiation have not been fully explored. Here we identified a long non-coding RNA called lnc-OAD (lncRNA associated with osteoblast and adipocyte differentiation, transcribed from 1700018A04Rik gene), which modulated 3T3-L1 adipocyte differentiation. Lnc-OAD was up-regulated expression during 3T3-L1 differentiation and stable knockdown of lnc-OAD inhibited adipocyte differentiation in 3T3-L1 cells. Further mechanisms study revealed that silencing of lnc-OAD strongly elevated the protein expression of ß-catenin, and then decreased expression of adipocyte master transcription factors PPAR-γ and C/EBPα. The addition of IWR-1 up-regulated the expression of PPAR-γ and C/EBPα and rescued the impairment of adipocyte differentiation caused by lnc-OAD knockdown. Meanwhile, we also found mitotic clonal expansion (MCE) during the early stage of adipocyte differentiation was inhibited in lnc-OAD-knockdown cells. Taken together, our study reveals a novel function of lnc-OAD in modulating adipogenesis via influencing mitotic clonal expansion and regulating WNT/ß-catenin signaling pathway.


Assuntos
Adipócitos/citologia , Adipogenia , RNA Longo não Codificante/genética , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Regulação da Expressão Gênica , Camundongos , PPAR gama/genética , beta Catenina/genética
17.
Sci Rep ; 7(1): 11232, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894251

RESUMO

To explore the role of Brassinolide (BR) in improving the tolerance of Sigma Broad in foxtail millet (Setaria italica L.), effects of 0.1 mg/L of BR foliar application 24 h before 3.37 g/ha of Sigma Broad treatment at five-leaf stage of foxtail millet on growth parameters, antioxidant enzymes, malondialdehyde (MDA), chlorophyll, net photosynthetic rate (P N), chlorophyll fluorescence and P700 parameters were studied 7 and 15 d after herbicide treatment, respectively. Results showed that Sigma Broad significantly decreased plant height, activities of superoxide dismutase (SOD), chlorophyll content, P N, PS II effective quantum yield (Y (II)), PS II electron transport rate (ETR (II)), photochemical quantum yield of PSI(Y (I)) and PS I electron transport rate ETR (I), but significantly increased MDA. Compared to herbicide treatment, BR dramatically increased plant height, activities of SOD, Y (II), ETR (II), Y (I) and ETR (I). This study showed BR pretreatment could improve the tolerance of Sigma Broad in foxtail millet through improving the activity of antioxidant enzymes, keeping electron transport smooth, and enhancing actual photochemical efficiency of PS II and PSI.


Assuntos
Aerossóis , Antioxidantes/administração & dosagem , Brassinosteroides/administração & dosagem , Herbicidas/toxicidade , Reguladores de Crescimento de Plantas , Setaria (Planta)/efeitos dos fármacos , Esteroides Heterocíclicos/administração & dosagem , Antioxidantes/metabolismo , Brassinosteroides/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Fotossíntese/efeitos dos fármacos , Setaria (Planta)/crescimento & desenvolvimento , Setaria (Planta)/metabolismo , Setaria (Planta)/fisiologia , Esteroides Heterocíclicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA